
图1. 钱包价值与其频率分布直方图及其正态拟合
但看分布直方图并不能推出它符合正态分布,但是考虑到程序的简洁性和随机数的合理性,这是最合乎情理的一种猜测。
越是后面的钱包,价值普遍更高

图2. 钱包序列数与其价值关系曲线
从图2中的线性拟合红线可以看到,钱包价值的总体变化趋势是在慢慢增大,其变化范围大约是一个绿色虚线上下界划出的“通道”。(曲线可以被围在这么一个正合乎常规的“通道”中,也从侧面反映了规律1的合理性,说明了并不是均匀分布的随机数)
从另一个平均数的图中也可以看出这一规律。

图3. 平均数随序列数的变化曲线
在样本中,1000价值的钱包被分成100份,均值为10。然而在图3中我们可以看到在最后一个钱包之前,平均数一直低于10,这就说明了一开始的钱包价值偏低,一直被后期的钱包价值拉着往上走,后期的钱包价值更高。
3. 当然平均数的图还可以透露出另一个规律,那就是最后的那一个人往往容易走运抽得比较多。因为最后那一个人是钱包剩下多少就拿多少的,而之前所有人的平均数 都低于10,所以至少保证了最后一个人会高于平均值。在本样本中,98号钱包抽到35,而最后一份钱包抽到46。
综上,根据样本猜测:

1. 抽到的钱大多数时候跟别人一样少,但一旦一多,就容易多很多。
2. 越是抽后面的钱包,钱越容易多。
3. 最后一个人往往容易撞大运。
点评:这种明显很实际有差异,小编每次不管什么时候抢都是几毛钱。
第二位同学写了一个简单python 代码
据观察,红包分钱满足以下几点:
1.不会有人拿不到钱
2.不会提前分完
3.钱的波动范围很大
红包在一开始创建的时候,分配方案就订好了。抢红包的时候,不过是挨个pop up而已。
因此 python 代码如下:
def weixin_divide_hongbao(money, n): divide_table = [random.randint(1, 10000)for x in xrange(0, n)] sum_ = sum(divide_table) return [x*money/sum_ for x in divide_table]不过上述算法还有两个小问题:
int j=1; while(j<1000) { int number=10; float total=100; float money; double min=0.01; double max; int i=1;List math=new ArrayList(); while(i<number) {max = total- min*(number- i); int k = (int)((number-i)/2); if (number -i <= 2) {k = number -i;} max = max/k; money=(int)(min*100+Math.random()*(max*100-min*100+1)); money=(float)money/100; total=total-money; math.add(money); System.out.println("第"+i+"个人拿到"+money+"剩下"+total); i++; if(i==number) { math.add(total); System.out.println("第"+i+"个人拿到"+total+"剩下0"); } }System.out.println("本轮发红包中第"+(math.indexOf(Collections.max(math))+1)+"个人手气最佳"); j++; }第四位同学的这种算法看起来非常科学。int j=1; while(j<1000) { int number=10; float total=100; float money; double min=0.01; double max; int i=1;List math=new ArrayList(); while(i<number) {max = total- min*(number- i); int k = (int)((number-i)/2); if (number -i <= 2) {k = number -i;} max = max/k; money=(int)(min*100+Math.random()*(max*100-min*100+1)); money=(float)money/100; total=total-money; math.add(money); System.out.println("第"+i+"个人拿到"+money+"剩下"+total); i++; if(i==number) { math.add(total); System.out.println("第"+i+"个人拿到"+total+"剩下0"); } }System.out.println("本轮发红包中第"+(math.indexOf(Collections.max(math))+1)+"个人手气最佳"); j++; } 输入一看,波动太大,这数据太无趣了!int j=1; while(j<1000) { int number=10; float total=100; float money; double min=0.01; double max; int i=1;List math=new ArrayList(); while(i<number) {max = total- min*(number- i); int k = (int)((number-i)/2); if (number -i <= 2) {k = number -i;} max = max/k; money=(int)(min*100+Math.random()*(max*100-min*100+1)); money=(float)money/100; total=total-money; math.add(money); System.out.println("第"+i+"个人拿到"+money+"剩下"+total); i++; if(i==number) { math.add(total); System.out.println("第"+i+"个人拿到"+total+"剩下0"); } }System.out.println("本轮发红包中第"+(math.indexOf(Collections.max(math))+1)+"个人手气最佳"); j++; }输出结果见下图