Welcome 微信登录

首页 / 操作系统 / Linux / Caffe在Ubuntu 14.04 64bit 下的安装

最近因为各种原因,装过不少次Caffe,安装过程很多坑,为节省新手的时间,特此总结整个安装流程。关于Ubuntu 版本的选择,建议用14.04这个比较稳定的版本,但是千万不要用麒麟版!!!比原版体验要差很多!!!Caffe的安装过程,基本采纳 这篇文章 然后稍作改动,跳过大坑。Caffe + Ubuntu 14.04 64bit + CUDA 6.5 配置说明  http://www.linuxidc.com/Linux/2015-04/116444.htm

1. 安装开发依赖包

sudo apt-get install build-essentialsudo apt-get install vim cmake gitsudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev libhdf5-serial-dev libgflags-dev libgoogle-glog-dev liblmdb-dev protobuf-compiler

2. 安装CUDA

一般电脑都有双显卡:Intel 的集成显卡 + Nvidia 的独立显卡。要想两个显卡同时运行,需要关闭 lightdm 服务。2.1 到 这里 下载安装包,选Linux x86 下的 Ubuntu 14.04, Local Package Installer,下载下来的文件为 cuda-repo-ubuntu1404-7-0-local_7.0-28_amd64.deb2.2 在BIOS设置里选择用Intel显卡来显示或作为主要显示设备2.3 进入Ubuntu, 按 ctrl+alt+F1 ,登入自己的账号,然后输入以下命令sudo service lightdm stop2.4 安装 CUDA,cd 到安装包目录,输入以下命令:sudo dpkg -i cuda-repo-ubuntu1404-7-0-local_7.0-28_amd64.debsudo apt-get updatesudo apt-get install cuda 安装完后重启电脑。

3. 安装cuDNN

3.1 到这里注册下载,貌似注册验证要花一两天的样子,嫌麻烦的可以直接到Linux公社资源站下载资源包下载地址:------------------------------------------分割线------------------------------------------FTP地址:ftp://ftp1.linuxidc.com用户名:ftp1.linuxidc.com密码:www.linuxidc.com在 2015年LinuxIDC.com7月Caffe在Ubuntu 14.04 64bit 下的安装下载方法见 http://www.linuxidc.com/Linux/2013-10/91140.htm------------------------------------------分割线------------------------------------------3.2 完后到下载目录,执行以下命令安装tar -zxvf cudnn-6.5-linux-x64-v2.tgzcd cudnn-6.5-linux-x64-v2sudo cp lib* /usr/local/cuda/lib64/sudo cp cudnn.h /usr/local/cuda/include/ 再更新下软连接cd /usr/local/cuda/lib64/sudo rm -rf libcudnn.so libcudnn.so.6.5sudo ln -s libcudnn.so.6.5.48 libcudnn.so.6.5sudo ln -s libcudnn.so.6.5 libcudnn.so3.3 设置环境变量gedit /etc/profile在打开的文件尾部加上PATH=/usr/local/cuda/bin:$PATHexport PATH保存后执行以下命令使之生效source /etc/profile同时创建以下文件sudo vim /etc/ld.so.conf.d/cuda.conf内容是/usr/local/cuda/lib64保存后,使之生效sudo ldconfig

4. 安装CUDA Sample 及 ATLAS

4.1 Build samplecd /usr/local/cuda/samplessudo make all -j8我电脑是八核的,所以make 时候用-j8参数,大家根据情况更改,整个过程有点长,十分钟左右。4.2 查看驱动是否安装成功cd bin/x86_64/linux/release./deviceQuery出现以下信息则成功./deviceQuery Starting... CUDA Device Query (Runtime API) version (CUDART static linking)Detected 1 CUDA Capable device(s)Device 0: "GeForce GTX 670"CUDA Driver Version / Runtime Version6.5 / 6.5CUDA Capability Major/Minor version number:3.0Total amount of global memory: 4095 MBytes (4294246400 bytes)( 7) Multiprocessors, (192) CUDA Cores/MP: 1344 CUDA CoresGPU Clock rate:1098 MHz (1.10 GHz)Memory Clock rate: 3105 MhzMemory Bus Width:256-bitL2 Cache Size: 524288 bytesMaximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)Maximum Layered 1D Texture Size, (num) layers1D=(16384), 2048 layersMaximum Layered 2D Texture Size, (num) layers2D=(16384, 16384), 2048 layersTotal amount of constant memory: 65536 bytesTotal amount of shared memory per block: 49152 bytesTotal number of registers available per block: 65536Warp size: 32Maximum number of threads per multiprocessor:2048Maximum number of threads per block: 1024Max dimension size of a thread block (x,y,z): (1024, 1024, 64)Max dimension size of a grid size(x,y,z): (2147483647, 65535, 65535)Maximum memory pitch:2147483647 bytesTexture alignment: 512 bytesConcurrent copy and kernel execution:Yes with 1 copy engine(s)Run time limit on kernels: YesIntegrated GPU sharing Host Memory:NoSupport host page-locked memory mapping: YesAlignment requirement for Surfaces:YesDevice has ECC support:DisabledDevice supports Unified Addressing (UVA):YesDevice PCI Bus ID / PCI location ID: 1 / 0Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 6.5, CUDA Runtime Version = 6.5, NumDevs = 1, Device0 = GeForce GTX 670Result = PASS4.3 安装ATLASATLAS是做线性代数运算的,还有俩可以选:一个是Intel 的 MKL,这个要收费,还有一个是OpenBLAS,这个比较麻烦;但是运行效率ATLAS < OpenBLAS < MKL我就用ATLAS咯:sudo apt-get install libatlas-base-dev 

5. 安装Caffe需要的Python包

网上介绍用现有的anaconda,我反正不建议,因为路径设置麻烦,很容易出错,而且自己安装很简单也挺快的。首先需要安装pipsudo apt-get install python-pip再下载caffe,我把caffe放在用户目录下cdgit clone https://github.com/BVLC/caffe.git再转到caffe的python目录,安装scipycd caffe/pythonsudo apt-get install python-numpy python-scipy python-matplotlib ipython ipython-notebook python-pandas python-sympy python-nose最后安装requirement里面的包,需要root权限sudo sufor req in $(cat requirements.txt); do pip install $req; done如果提示报错,一般是缺少必须的包引起的,直接根据提示 pip install <package-name>就行了。安装完后退出root权限exit 

6. 编译caffe

首先修改配置文件,回到caffe目录cd ~/caffecp Makefile.config.example Makefile.configgedit Makefile.config这里仅需修改两处:i) 使用cuDNN# USE_CUDNN := 1 这里去掉#,取消注释为 USE_CUDNN := 1 ii) 修改python包目录,这句话PYTHON_INCLUDE := /usr/include/python2.7 /usr/lib/python2.7/dist-packages/numpy/core/include改为PYTHON_INCLUDE := /usr/include/python2.7 /usr/local/lib/python2.7/dist-packages/numpy/core/include因为新安装的python包目录在这里: /usr/local/lib/python2.7/dist-packages/接下来就好办了,直接makemake all -j4make testmake runtestmake pycaffe这时候cd 到caffe 下的 python 目录,试试caffe 的 python wrapper安装好没有:pythonimport caffe如果不报错,那就说明安装好了。更多Ubuntu相关信息见Ubuntu 专题页面 http://www.linuxidc.com/topicnews.aspx?tid=2本文永久更新链接地址