Welcome 微信登录

首页 / 操作系统 / Linux / Java实现LRU缓存

1.Cache

Cache对于代码系统的加速与优化具有极大的作用,对于码农来说是一个很熟悉的概念。可以说,你在内存中new 了一个一段空间(比方说数组,list)存放一些冗余的结果数据,并利用这些数据完成了以空间换时间的优化目的,你就已经使用了cache。
有服务级的缓存框架,如memcache,Redis等。其实,很多时候,我们在自己同一个服务内,或者单个进程内也需要缓存,例如,lucene就对搜索做了缓存,而无须依赖外界。那么,我们如何实现我们自己的缓存?还要带自动失效的,最好还是LRU(Least Recently Used)。当你思考怎么去实现,你可能会想得很远。为了LRU,需要把刚使用的数据存入栈,或者纪录每个数据最近使用的时间,再来的定时扫描失效的线程….其实,Java本身就已经为我们提供了LRU Cache很好的实现,即LinkedHashMap。

2.LinkedHashMap分析

很多没有去细究过其内部实现的人,只是将其当作一个普通的hashMap来对待。LinkedHashMap是一个双向链表,加上HashTable的实现。表现出来与普通HashMap的一个区别就是LinkedHashMap会记录存入其中的数据的顺序,并能按顺取出。
为了实现,一个hash表,自然应该先申请在一片连续的内存空间上。当需要存入数据的时候,根据相应的hash值存入。而LinkedHashMap在这个基础上,为每个entry设置了before与after属性,形了一个双向链表,记录了他们put进入的前后顺序。不仅如此,每当通过get来获得某个元素后,get方法内部,会在最后通过afterNodeAccess方法来调整链表的指向:void afterNodeAccess(Node<K,V> e) { // move node to lastLinkedHashMap.Entry<K,V> last;if (accessOrder && (last = tail) != e) {LinkedHashMap.Entry<K,V> p =(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;p.after = null;if (b == null)head = a;elseb.after = a;if (a != null)a.before = b;elselast = b;if (last == null)head = p;else {p.before = last;last.after = p;}tail = p;++modCount;}}上述代码将Node e移至了双向链表的未尾。而在方法afterNodeInsertion中,只要满足条件,便移除最老的数据,即链表的head。void afterNodeInsertion(boolean evict) { // possibly remove eldestLinkedHashMap.Entry<K,V> first;if (evict && (first = head) != null && removeEldestEntry(first)) {K key = first.key;removeNode(hash(key), key, null, false, true);}} 可见,当你为LinkedHashMap设置有限空间的时候,自然便完成了LRU Cache的效果。当然还有一个前提,你必须重写一个方法removeEldestEntry,返回true。表示空间已满时,删除最老的。@Overridepublic boolean removeEldestEntry(Map.Entry<K, V> eldest){ return size()>capacity;}

3.线程安全的LRU Cache

如此,我们就获得了一个LRU缓存利器,满足了我们大多场景下的需求。但还有一个问题,它不是线程安全的。在多线程的情况下,你有可能需要对某些Cache做同步处理。这时候,你再找,可以看到java有ConcurrentHashMap的实现,但并不存在ConcurrentLinkedHashMap这样的类。
当然这个问题也不大,我们可以对再有的LinkedHashMap,再作封装,对get,put, 之类的方法加上同步操作。目前,我们所用的处理,是直接采和google提供的guava包,这里面就提供了我们想要的ConcurrentLinkedHashMap。这样就可以很方便地实现一个线程安全。具体代码如下:import java.util.Set;import com.googlecode.concurrentlinkedhashmap.Weighers;import com.googlecode.concurrentlinkedhashmap.ConcurrentLinkedHashMap;public class ConcurrentLRUCache<K, V> { public static final int DEFAULT_CONCURENCY_LEVEL = 32;private final ConcurrentLinkedHashMap<K, V> map;public ConcurrentLRUCache(int capacity) {this(capacity, DEFAULT_CONCURENCY_LEVEL);}public ConcurrentLRUCache(int capacity, int concurrency) {map = new ConcurrentLinkedHashMap.Builder<K, V>().weigher(Weighers.<V> singleton()).initialCapacity(capacity).maximumWeightedCapacity(capacity).concurrencyLevel(concurrency).build();}public void put(K key, V value) {map.put(key, value);}public V get(K key) {V v = map.get(key);return v;}public V getInternal(K key) {return map.get(key);}public void remove(K key) {map.remove(key);}public long getCapacity() {return map.capacity();}public void updateCapacity(int capacity) {map.setCapacity(capacity);}public int getSize() {return map.size();}public void clear() {map.clear();}public Set<K> getKeySet() {return map.keySet();}}本文永久更新链接地址:http://www.linuxidc.com/Linux/2016-12/138384.htm