Welcome 微信登录

首页 / 操作系统 / Linux / Matlab 高斯_拉普拉斯滤波器处理医学图像

前言:本程序是我去年实现论文算法时所做。主要功能为标记切割肝脏区域。时间有点久,很多细节已经模糊加上代码做了很多注释,因此在博客中不再详述。

NOTE: 程序分几大段功能模块,仔细阅读,对解决医学图像还是有一定的借鉴意义
想借鉴本文的一定要仔细阅读代码和注释,中间有人机交互部分,空跑会抛异常
.dcm数据,有兴趣的可以下载,实测一下代码。dcm数据下载地址:Linux公社资源站下载:------------------------------------------分割线------------------------------------------免费下载地址在 http://linux.linuxidc.com/用户名与密码都是www.linuxidc.com具体下载目录在 /2016年资料/12月/18日/Matlab 高斯_拉普拉斯滤波器处理医学图像/下载方法见 http://www.linuxidc.com/Linux/2013-07/87684.htm------------------------------------------分割线------------------------------------------clc,clearimg_1=dicomread("10011.dcm");%读取dcm文件(所谓的灰度值)metadata=dicominfo("10011.dcm");%获取dcm文件的信息% figure% imagesc(img_1);% imshow(uint8(img_1));Hu0=(int16(img_1)*1+(-1024));%文档中的第二步,转为CT值的那个。%% 窗宽窗位设置:c 窗位 w 窗宽这个是按照你给的公式写的Hu=double(Hu0);%此时有正负。转双精度的CT值。gm=255;c=60;w=100;Gv=0.*(Hu<c-w/2)+(gm/w)*(Hu+(w/2)-c).*(c-w/2<=Hu&Hu<=c+w/2)+gm.*(Hu>c+w/2);%Gv为显示灰度。figureimshow(uint8(Gv));title("加窗")%% 一次CTRL+T%%拉普拉斯高斯滤波 (有库函数)%这个是整体区域。img_gray=uint8(Gv);hsize=10;%滤波模板大小。自己可以修改sigma=0.4; %滤波系数sigma自己修改会得到不同的效果图h = fspecial("log", hsize, sigma); %构造拉普拉斯_高斯滤波器,"log"是这个滤波器的标志img_filter0=double(imfilter(Hu0, h)); %调用matlab中的imfilter函数 ,进行滤波。其中img_gray为要过滤的图像,h为滤波器。figureimg_filter=uint8(img_filter0);imshow((img_filter));%显示图像title("拉普拉斯高斯滤波")%%%% 自作ROI区域利用ginput函数标出点,然后包围所标区域。%%对滤波变换后进行抠图figureimshow(img_filter);%%此处为img_filter 就是对滤波后抠图,此处为img_gray就是对为滤波的灰度图进行抠图。title("加窗图抠图")hold onx=[];y=[];n=0;while(1)[xtemp,ytemp,button]=ginput(1);plot(xtemp,ytemp,"r*");x=[x xtemp];y=[y ytemp];n=n+1;% text(xtemp+0.1,ytemp,int2str(n));if(button==32) %button=32表示当你点点完了。你就按空格,退出点点的状态。breakendendline(x,y);%x y连线% hold offt=1:n;tt=1:0.1:n;xx=spline(t,x,tt);%因为手点 点数不够多,不够精确,需要插值spline为插值函数yy=spline(t,y,tt);plot(xx,yy,"b:");BW = roipoly(img_filter,xx,yy); %roipoly为抠图函数。以img_filiter为基础。xx yy为轮廓。包围的区域扣出来figure, imshow(BW) %返回的是一个二值图像BW。就是一张黑白图。扣除的地方为1.其他地方均为0;title("轮廓图")%%下面返回 被扣的地方的图像。 就是图上只有被扣除的东西figureimg_last=BW.*(double(img_filter));%原理是这样:BW为 1 0的二值图,被扣的地方是兴趣区域都是1.这时%与原图像进行.* ,除了为1的地方返回灰度值*1,其他地方都返回灰度值*0。img_last1=uint8(img_last);%转为uint8格式。不然显示不了img_last1(img_last1==0)=NaN;% 调整背景。% figuresubplot(221)imshow(img_last1)%显示最后的图像title("轮廓返回图")%%%你需要的兴趣区域的数据如下: 。它的特点就是 兴趣区域为原图的CT值,非兴趣区域全是0;matlab图像是矩阵。所以必须是规则的。%所以 要有0 来填充。final_CT=BW.*(Hu);%%你要是要用 最后的抠图的CT值。这个就是。%%论文中有这么一句话:the mean gray-level intensity (m) and uniformity (u)%%指的是平均灰度强度和均一性。实质求的是ROI区域的灰度值,和灰度值的均一性;%% l是灰度值, p(l)是l灰度值出现的概率。%% 先给图像加窗 转为灰度值Gv——>拉普拉斯高斯滤波——>抠图——>求抠图地方的灰度平均值m、均一性值n%% 那个gui是演示用的。是在没滤波的基础上进行的抠图。没有关系。因为数据在这产生。%%img_last1 的最后数据。就是 抠出得图。周围用 0填充的。所以周围为黑色。[p,q]=size(img_last1);RGB=zeros(p,q);img_B=cat(3,RGB,RGB,img_last1);%实质就是讲RGBR=0,G=0,B=灰度值。下面类似。subplot(222)imshow(img_B);title("B")img_G=cat(3,RGB,img_last1,RGB);subplot(223)imshow(img_G);title("G")img_R=cat(3,img_last1,RGB,RGB);subplot(224)imshow(img_R);title("R")%% ROI 区域均值求取。 img_mean;img_sum=sum(img_last1(:));%求出所有元素总和。填充区域为0 。不影响。N=numel(find(BW==1));%BW中有1的地方 就是有灰度的地方。所以BW中1 的多少,就是灰度的总数。img_mean=img_sum/N;大致的结果图如下:



有任何问题和建议,欢迎留言讨论。也可以发我邮箱wenbya@foxmail.com本文永久更新链接地址:http://www.linuxidc.com/Linux/2016-12/138506.htm