首页 / 操作系统 / Linux / 基于OpenCV的人脸识别程序
1. 解析opencv自带人脸识别源码(……/opencv-3.1.0/samples/cpp/facedetect.cpp)@ 操作系统:Ubuntu 15.04OpenCV版本:3.1.0#include "opencv2/objdetect.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>using namespace std;
using namespace cv;static void help()
{
cout << "
This program demonstrates the cascade recognizer. Now you can use Haar or LBP features.
"
"This classifier can recognize many kinds of rigid objects, once the appropriate classifier is trained.
"
"It"s most known use is for faces.
"
"Usage:
"
"./facedetect [--cascade=<cascade_path> this is the primary trained classifier such as frontal face]
"
" [--nested-cascade[=nested_cascade_path this an optional secondary classifier such as eyes]]
"
" [--scale=<image scale greater or equal to 1, try 1.3 for example>]
"
" [--try-flip]
"
" [filename|camera_index]
"
"see facedetect.cmd for one call:
"
"./facedetect --cascade="../../data/haarcascades/haarcascade_frontalface_alt.xml" --nested-cascade="../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml" --scale=1.3
"
"During execution:
Hit any key to quit.
"
" Using OpenCV version " << CV_VERSION << "
" << endl;
}void detectAndDraw( Mat& img, CascadeClassifier& cascade,
CascadeClassifier& nestedCascade,
double scale, bool tryflip );string cascadeName;
string nestedCascadeName;int main( int argc, const char** argv )
{
VideoCapture capture;
Mat frame, image;
string inputName;
bool tryflip; // CascadeClassifier是Opencv中做人脸检测的时候的一个级联分类器,现在有两种选择:一是使用老版本的CvHaarClassifierCascade函数,一是使用新版本的CascadeClassifier类。老版本的分类器只支持类Haar特征,而新版本的分类器既可以使用Haar,也可以使用LBP特征。
CascadeClassifier cascade, nestedCascade;
double scale; cv::CommandLineParser parser(argc, argv,
"{help h||}"
"{cascade|../../data/haarcascades/haarcascade_frontalface_alt.xml|}"
"{nested-cascade|../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml|}"
"{scale|1|}{try-flip||}{@filename||}"
);
if (parser.has("help"))
{
help();
return 0;
} // 问题1:不用定义返回类型?
cascadeName = parser.get<string>("cascade");
nestedCascadeName = parser.get<string>("nested-cascade");
scale = parser.get<double>("scale");
if (scale < 1)
scale = 1;
tryflip = parser.has("try-flip");
inputName = parser.get<string>("@filename");
std::cout << inputName << std::endl; // test
if (!parser.check())
{
parser.printErrors();
return 0;
}
// 加载模型
if ( !nestedCascade.load( nestedCascadeName ) )
cerr << "WARNING: Could not load classifier cascade for nested objects" << endl;
if( !cascade.load( cascadeName ) )
{
cerr << "ERROR: Could not load classifier cascade" << endl;
help();
return -1;
}
// 读取摄像头
// isdigit检测字符是否为阿拉伯数字
if( inputName.empty() || (isdigit(inputName[0]) && inputName.size() == 1) )
{
int c = inputName.empty() ? 0 : inputName[0] - "0";
// 此处若系统在虚拟机上,需在虚拟机中设置接管摄像头:虚拟机(M)-> 可移动设备 -> 摄像头名称 -> 连接(断开与主机连接)
if(!capture.open(c))
cout << "Capture from camera #" << c << " didn"t work" << endl;
else {
capture.set(CV_CAP_PROP_FRAME_WIDTH, 640);
capture.set(CV_CAP_PROP_FRAME_HEIGHT, 480);
}
}
else if( inputName.size() )
{
image = imread( inputName, 1 );
if( image.empty() )
{
if(!capture.open( inputName ))
cout << "Could not read " << inputName << endl;
}
}
else
{
image = imread( "../data/lena.jpg", 1 );
if(image.empty()) cout << "Couldn"t read ../data/lena.jpg" << endl;
} if( capture.isOpened() )
{
cout << "Video capturing has been started ..." << endl;
for(;;)
{
std::cout << "capturing..." << std::endl; // test
capture >> frame;
if( frame.empty() )
break; Mat frame1 = frame.clone();
std::cout << "Start to detect..." << std::endl; // test
detectAndDraw( frame1, cascade, nestedCascade, scale, tryflip ); int c = waitKey(10);
if( c == 27 || c == "q" || c == "Q" )
break;
}
}
else
{
cout << "Detecting face(s) in " << inputName << endl;
if( !image.empty() )
{
detectAndDraw( image, cascade, nestedCascade, scale, tryflip );
waitKey(0);
}
else if( !inputName.empty() )
{
/* assume it is a text file containing the
list of the image filenames to be processed - one per line */
FILE* f = fopen( inputName.c_str(), "rt" );
if( f )
{
char buf[1000+1];
while( fgets( buf, 1000, f ) )
{
int len = (int)strlen(buf), c;
while( len > 0 && isspace(buf[len-1]) )
len--;
buf[len] = " ";
cout << "file " << buf << endl;
image = imread( buf, 1 );
if( !image.empty() )
{
detectAndDraw( image, cascade, nestedCascade, scale, tryflip );
c = waitKey(0);
if( c == 27 || c == "q" || c == "Q" )
break;
}
else
{
cerr << "Aw snap, couldn"t read image " << buf << endl;
}
}
fclose(f);
}
}
} return 0;
}void detectAndDraw( Mat& img, CascadeClassifier& cascade,
CascadeClassifier& nestedCascade,
double scale, bool tryflip )
{
double t = 0;
vector<Rect> faces, faces2;
const static Scalar colors[] =
{
Scalar(255,0,0),
Scalar(255,128,0),
Scalar(255,255,0),
Scalar(0,255,0),
Scalar(0,128,255),
Scalar(0,255,255),
Scalar(0,0,255),
Scalar(255,0,255)
};
Mat gray, smallImg; cvtColor( img, gray, COLOR_BGR2GRAY );
double fx = 1 / scale;
resize( gray, smallImg, Size(), fx, fx, INTER_LINEAR );
equalizeHist( smallImg, smallImg ); t = (double)cvGetTickCount();
cascade.detectMultiScale( smallImg, faces,
1.1, 2, 0
//|CASCADE_FIND_BIGGEST_OBJECT
//|CASCADE_DO_ROUGH_SEARCH
|CASCADE_SCALE_IMAGE,
Size(30, 30) );
if( tryflip )
{
flip(smallImg, smallImg, 1);
cascade.detectMultiScale( smallImg, faces2,
1.1, 2, 0
//|CASCADE_FIND_BIGGEST_OBJECT
//|CASCADE_DO_ROUGH_SEARCH
|CASCADE_SCALE_IMAGE,
Size(30, 30) );
for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++ )
{
faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height));
}
}
t = (double)cvGetTickCount() - t;
printf( "detection time = %g ms
", t/((double)cvGetTickFrequency()*1000.) );
for ( size_t i = 0; i < faces.size(); i++ )
{
Rect r = faces[i];
Mat smallImgROI;
vector<Rect> nestedObjects;
Point center;
Scalar color = colors[i%8];
int radius; double aspect_ratio = (double)r.width/r.height;
if( 0.75 < aspect_ratio && aspect_ratio < 1.3 )
{
center.x = cvRound((r.x + r.width*0.5)*scale);
center.y = cvRound((r.y + r.height*0.5)*scale);
radius = cvRound((r.width + r.height)*0.25*scale);
circle( img, center, radius, color, 3, 8, 0 );
}
else
rectangle( img, cvPoint(cvRound(r.x*scale), cvRound(r.y*scale)),
cvPoint(cvRound((r.x + r.width-1)*scale), cvRound((r.y + r.height-1)*scale)),
color, 3, 8, 0);
if( nestedCascade.empty() )
continue;
smallImgROI = smallImg( r );
nestedCascade.detectMultiScale( smallImgROI, nestedObjects,
1.1, 2, 0
//|CASCADE_FIND_BIGGEST_OBJECT
//|CASCADE_DO_ROUGH_SEARCH
//|CASCADE_DO_CANNY_PRUNING
|CASCADE_SCALE_IMAGE,
Size(30, 30) );
for ( size_t j = 0; j < nestedObjects.size(); j++ )
{
Rect nr = nestedObjects[j];
center.x = cvRound((r.x + nr.x + nr.width*0.5)*scale);
center.y = cvRound((r.y + nr.y + nr.height*0.5)*scale);
radius = cvRound((nr.width + nr.height)*0.25*scale);
circle( img, center, radius, color, 3, 8, 0 );
}
}
imshow( "result", img );
}问题未解决:运行到capture>>frame;时出现select timeout的错误;@ 操作系统:Windows 10OpenCV版本:3.1.0代码与Linux版本基本相同,未出现错误;OpenCV官方教程中文版(For Python) PDF http://www.linuxidc.com/Linux/2015-08/121400.htmUbuntu Linux下安装OpenCV2.4.1所需包 http://www.linuxidc.com/Linux/2012-08/68184.htmUbuntu 16.04上用CMake图形界面交叉编译树莓派的OpenCV3.0 http://www.linuxidc.com/Linux/2016-10/135914.htmUbuntu 12.04下安装OpenCV 2.4.5总结 http://www.linuxidc.com/Linux/2013-06/86704.htmUbuntu 10.04中安装OpenCv2.1九步曲 http://www.linuxidc.com/Linux/2010-09/28678.htm基于QT和OpenCV的人脸识别系统 http://www.linuxidc.com/Linux/2011-11/47806.htm[翻译]Ubuntu 14.04, 13.10 下安装 OpenCV 2.4.9 http://www.linuxidc.com/Linux/2014-12/110045.htmOpenCV的详细介绍:请点这里
OpenCV的下载地址:请点这里本文永久更新链接地址:http://www.linuxidc.com/Linux/2016-11/137099.htm