Welcome 微信登录

首页 / 操作系统 / Linux / 基于OpenCV的人脸识别程序

1. 解析opencv自带人脸识别源码(……/opencv-3.1.0/samples/cpp/facedetect.cpp)@ 操作系统:Ubuntu 15.04OpenCV版本:3.1.0#include "opencv2/objdetect.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>using namespace std;
using namespace cv;static void help()
{
    cout << " This program demonstrates the cascade recognizer. Now you can use Haar or LBP features. "
            "This classifier can recognize many kinds of rigid objects, once the appropriate classifier is trained. "
            "It"s most known use is for faces. "
            "Usage: "
            "./facedetect [--cascade=<cascade_path> this is the primary trained classifier such as frontal face] "
             " [--nested-cascade[=nested_cascade_path this an optional secondary classifier such as eyes]] "
             " [--scale=<image scale greater or equal to 1, try 1.3 for example>] "
             " [--try-flip] "
             " [filename|camera_index] "
            "see facedetect.cmd for one call: "
            "./facedetect --cascade="../../data/haarcascades/haarcascade_frontalface_alt.xml" --nested-cascade="../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml" --scale=1.3 "
            "During execution: Hit any key to quit. "
            " Using OpenCV version " << CV_VERSION << " " << endl;
}void detectAndDraw( Mat& img, CascadeClassifier& cascade,
                    CascadeClassifier& nestedCascade,
                    double scale, bool tryflip );string cascadeName;
string nestedCascadeName;int main( int argc, const char** argv )
{
    VideoCapture capture;
    Mat frame, image;
    string inputName;
    bool tryflip;    // CascadeClassifier是Opencv中做人脸检测的时候的一个级联分类器,现在有两种选择:一是使用老版本的CvHaarClassifierCascade函数,一是使用新版本的CascadeClassifier类。老版本的分类器只支持类Haar特征,而新版本的分类器既可以使用Haar,也可以使用LBP特征。
    CascadeClassifier cascade, nestedCascade;
    double scale;    cv::CommandLineParser parser(argc, argv,
        "{help h||}"
        "{cascade|../../data/haarcascades/haarcascade_frontalface_alt.xml|}"
        "{nested-cascade|../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml|}"
        "{scale|1|}{try-flip||}{@filename||}"
    );
    if (parser.has("help"))
    {
        help();
        return 0;
    }    // 问题1:不用定义返回类型?
    cascadeName = parser.get<string>("cascade");
    nestedCascadeName = parser.get<string>("nested-cascade");
    scale = parser.get<double>("scale");
    if (scale < 1)
        scale = 1;
    tryflip = parser.has("try-flip");
    inputName = parser.get<string>("@filename");
    std::cout << inputName << std::endl;  // test
    if (!parser.check())
    {
        parser.printErrors();
        return 0;
    }
 
    // 加载模型
    if ( !nestedCascade.load( nestedCascadeName ) )
        cerr << "WARNING: Could not load classifier cascade for nested objects" << endl;
    if( !cascade.load( cascadeName ) )
    {
        cerr << "ERROR: Could not load classifier cascade" << endl;
        help();
        return -1;
    }
    // 读取摄像头
    // isdigit检测字符是否为阿拉伯数字
    if( inputName.empty() || (isdigit(inputName[0]) && inputName.size() == 1) )
    {
        int c = inputName.empty() ? 0 : inputName[0] - "0";
        // 此处若系统在虚拟机上,需在虚拟机中设置接管摄像头:虚拟机(M)-> 可移动设备 -> 摄像头名称 -> 连接(断开与主机连接)
        if(!capture.open(c))
            cout << "Capture from camera #" <<  c << " didn"t work" << endl;
        else {
          capture.set(CV_CAP_PROP_FRAME_WIDTH, 640);
          capture.set(CV_CAP_PROP_FRAME_HEIGHT, 480);
        }
    }
    else if( inputName.size() )
    {
        image = imread( inputName, 1 );
        if( image.empty() )
        {
            if(!capture.open( inputName ))
                cout << "Could not read " << inputName << endl;
        }
    }
    else
    {
        image = imread( "../data/lena.jpg", 1 );
        if(image.empty()) cout << "Couldn"t read ../data/lena.jpg" << endl;
    }    if( capture.isOpened() )
    {
        cout << "Video capturing has been started ..." << endl;
        for(;;)
        {
            std::cout << "capturing..." << std::endl;  // test
            capture >> frame;
            if( frame.empty() )
                break;            Mat frame1 = frame.clone();
            std::cout << "Start to detect..." << std::endl;  // test
            detectAndDraw( frame1, cascade, nestedCascade, scale, tryflip );            int c = waitKey(10);
            if( c == 27 || c == "q" || c == "Q" )
                break;
        }
    }
    else
    {
        cout << "Detecting face(s) in " << inputName << endl;
        if( !image.empty() )
        {
            detectAndDraw( image, cascade, nestedCascade, scale, tryflip );
            waitKey(0);
        }
        else if( !inputName.empty() )
        {
            /* assume it is a text file containing the
            list of the image filenames to be processed - one per line */
            FILE* f = fopen( inputName.c_str(), "rt" );
            if( f )
            {
                char buf[1000+1];
                while( fgets( buf, 1000, f ) )
                {
                    int len = (int)strlen(buf), c;
                    while( len > 0 && isspace(buf[len-1]) )
                        len--;
                    buf[len] = "";
                    cout << "file " << buf << endl;
                    image = imread( buf, 1 );
                    if( !image.empty() )
                    {
                        detectAndDraw( image, cascade, nestedCascade, scale, tryflip );
                        c = waitKey(0);
                        if( c == 27 || c == "q" || c == "Q" )
                            break;
                    }
                    else
                    {
                        cerr << "Aw snap, couldn"t read image " << buf << endl;
                    }
                }
                fclose(f);
            }
        }
    }    return 0;
}void detectAndDraw( Mat& img, CascadeClassifier& cascade,
                    CascadeClassifier& nestedCascade,
                    double scale, bool tryflip )
{
    double t = 0;
    vector<Rect> faces, faces2;
    const static Scalar colors[] =
    {
        Scalar(255,0,0),
        Scalar(255,128,0),
        Scalar(255,255,0),
        Scalar(0,255,0),
        Scalar(0,128,255),
        Scalar(0,255,255),
        Scalar(0,0,255),
        Scalar(255,0,255)
    };
    Mat gray, smallImg;    cvtColor( img, gray, COLOR_BGR2GRAY );
    double fx = 1 / scale;
    resize( gray, smallImg, Size(), fx, fx, INTER_LINEAR );
    equalizeHist( smallImg, smallImg );    t = (double)cvGetTickCount();
    cascade.detectMultiScale( smallImg, faces,
        1.1, 2, 0
        //|CASCADE_FIND_BIGGEST_OBJECT
        //|CASCADE_DO_ROUGH_SEARCH
        |CASCADE_SCALE_IMAGE,
        Size(30, 30) );
    if( tryflip )
    {
        flip(smallImg, smallImg, 1);
        cascade.detectMultiScale( smallImg, faces2,
                               1.1, 2, 0
                               //|CASCADE_FIND_BIGGEST_OBJECT
                               //|CASCADE_DO_ROUGH_SEARCH
                               |CASCADE_SCALE_IMAGE,
                               Size(30, 30) );
        for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++ )
        {
            faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height));
        }
    }
    t = (double)cvGetTickCount() - t;
    printf( "detection time = %g ms ", t/((double)cvGetTickFrequency()*1000.) );
    for ( size_t i = 0; i < faces.size(); i++ )
    {
        Rect r = faces[i];
        Mat smallImgROI;
        vector<Rect> nestedObjects;
        Point center;
        Scalar color = colors[i%8];
        int radius;        double aspect_ratio = (double)r.width/r.height;
        if( 0.75 < aspect_ratio && aspect_ratio < 1.3 )
        {
            center.x = cvRound((r.x + r.width*0.5)*scale);
            center.y = cvRound((r.y + r.height*0.5)*scale);
            radius = cvRound((r.width + r.height)*0.25*scale);
            circle( img, center, radius, color, 3, 8, 0 );
        }
        else
            rectangle( img, cvPoint(cvRound(r.x*scale), cvRound(r.y*scale)),
                     cvPoint(cvRound((r.x + r.width-1)*scale), cvRound((r.y + r.height-1)*scale)),
                     color, 3, 8, 0);
        if( nestedCascade.empty() )
            continue;
        smallImgROI = smallImg( r );
        nestedCascade.detectMultiScale( smallImgROI, nestedObjects,
            1.1, 2, 0
            //|CASCADE_FIND_BIGGEST_OBJECT
            //|CASCADE_DO_ROUGH_SEARCH
            //|CASCADE_DO_CANNY_PRUNING
            |CASCADE_SCALE_IMAGE,
            Size(30, 30) );
        for ( size_t j = 0; j < nestedObjects.size(); j++ )
        {
            Rect nr = nestedObjects[j];
            center.x = cvRound((r.x + nr.x + nr.width*0.5)*scale);
            center.y = cvRound((r.y + nr.y + nr.height*0.5)*scale);
            radius = cvRound((nr.width + nr.height)*0.25*scale);
            circle( img, center, radius, color, 3, 8, 0 );
        }
    }
    imshow( "result", img );
}问题未解决:运行到capture>>frame;时出现select timeout的错误;@ 操作系统:Windows 10OpenCV版本:3.1.0代码与Linux版本基本相同,未出现错误;OpenCV官方教程中文版(For Python) PDF  http://www.linuxidc.com/Linux/2015-08/121400.htmUbuntu Linux下安装OpenCV2.4.1所需包 http://www.linuxidc.com/Linux/2012-08/68184.htmUbuntu 16.04上用CMake图形界面交叉编译树莓派的OpenCV3.0  http://www.linuxidc.com/Linux/2016-10/135914.htmUbuntu 12.04下安装OpenCV 2.4.5总结 http://www.linuxidc.com/Linux/2013-06/86704.htmUbuntu 10.04中安装OpenCv2.1九步曲 http://www.linuxidc.com/Linux/2010-09/28678.htm基于QT和OpenCV的人脸识别系统 http://www.linuxidc.com/Linux/2011-11/47806.htm[翻译]Ubuntu 14.04, 13.10 下安装 OpenCV 2.4.9  http://www.linuxidc.com/Linux/2014-12/110045.htmOpenCV的详细介绍:请点这里
OpenCV的下载地址:请点这里本文永久更新链接地址:http://www.linuxidc.com/Linux/2016-11/137099.htm