Welcome 微信登录

首页 / 操作系统 / Linux / s3c2440对norflash的操作

norflash和nandflash是应用不同技术而实现的非易失闪存。它们之间的各自特点在这里就不做介绍了,而只把s3c2440对norflash的操作做一讲解。我们用的norflash为EN29LV160AB,其实对各种型号的norflash进行读写等操作差别不大。        对norflash的操作主要就是读、写、擦除和识别等。EN29LV160AB的数据宽度可以是8位字节型,也可以是16位的字型,它由EN29LV160AB的某一引脚配置实现的。在这里我们选择字型。 对norflash的读操作比较简单,系统上电后会自动进入读模式,而且也不需要额外的命令来实现读操作。下面的函数实现了读操作: U16 read_en29lv160ab(U32 addr){       return *((volatile U16 *)(addr));}        norflash不仅能够实现硬件复位,而且可以实现软件复位。软件复位的操作是向任一地址写入复位命令0xF0。下面的函数实现了软件复位: void reset_en29lv160ab(void){       *((volatile U16 *)0x0) = 0xf0;}        norflash的擦除操作和写操作要稍微复杂一些,它们需要4个或6个周期来完成,每一个周期都要把相应的命令写入norflash中的某一命令寄存器中。写操作的过程为第一个周期是把命令0xAA写入地址为0x555的命令寄存器中,第二个周期是把命令0x55写入地址为0x2AA命令寄存器中,第三个周期是把命令0xA0再写入地址为0x555命令寄存器中,第四个周期为真正地把要写入的数据写入到norflash的地址中。下面的函数实现了写操作,其中该函数的两个输入参数分别为要写入的数据和地址,为了方便,我们事先定义好命令寄存器: #define    flash_base              0x00000000#define    CMD_ADDR0              *((volatile U16 *)(0x555<<1+flash_base))#define    CMD_ADDR1              *((volatile U16 *)(0x2aa<<1+flash_base)) U8 en29lv160ab_program(U32 addr, U16 dat){       CMD_ADDR0 = 0xaa;       CMD_ADDR1 = 0x55;       CMD_ADDR0 = 0xa0;       *((volatile U16 *)(addr)) = dat;        return check_toggle();} 由于我们是把norflash连接到了s3c2440的bank 0上,因此norflash中的地址相对于s3c2440来说基址为0x00000000。而之所以又把norflash中的地址向左移一位(即乘以2),是因为我们是把s3c2440的ADDR1连接到了norflash的A0上的缘故。在该函数中,我们还调用了check_toggle函数,它的作用是用于判断这次操作是否正确,它的原型为: U8 check_toggle(){       volatile U16 newtoggle,oldtoggle;       oldtoggle = *((volatile U16 *)0x0);        while(1)       {                   newtoggle = *((volatile U16 *)0x0);                            if((oldtoggle & 0x40)==(newtoggle & 0x40))                     break;                            if(newtoggle & 0x20)           //DQ5              {                     oldtoggle = *((volatile U16 *)0x0);                     newtoggle = *((volatile U16 *)0x0);                                          if((oldtoggle & 0x40)==(newtoggle & 0x40))                            break;                     else                             return 0;         //错误              }                   oldtoggle = newtoggle;       }              return 1;         //正确} 它的原理是连续两次读取数据总线上的数据,判断数据总线上的第6位数值(DQ6)是否翻转,如果没有翻转则正确,否则还要判断第5位(DQ5),以确定是否是因为超时而引起的翻转。        写操作只能使“1”变为“0”,而只有擦除才能使“0”变为“1”。因此在写之前一定要先擦除。擦除分为块擦除和整片擦除。块擦除的过程为第一个周期是把命令0xAA写入地址为0x555的命令寄存器中,第二个周期是把命令0x55写入地址为0x2AA命令寄存器中,第三个周期是把命令0x80再写入地址为0x555命令寄存器中,第四个周期是把命令0xAA写入地址为0x555的命令寄存器中,第五个周期是把命令0x55再写入地址为0x2AA命令寄存器中,第六个周期是把命令0x30写入要擦除块的首地址内。下面的函数为块擦除,其中输入参数为要擦除块的首地址: U8 en29lv160ab_sector_erase(U32 section_addr){       CMD_ADDR0 = 0xaa;       CMD_ADDR1 = 0x55;       CMD_ADDR0 = 0x80;       CMD_ADDR0 = 0xaa;       CMD_ADDR1 = 0x55;       *((volatile U16 *)(section_addr)) = 0x30;              return check_toggle();}        对norflash另一个比较常用的操作是读取芯片的ID。读取厂商ID的过程为第一个周期是把命令0xAA写入地址为0x555的命令寄存器中,第二个周期是把命令0x55写入地址为0x2AA命令寄存器中,第三个周期是把命令0x90再写入地址为0x555命令寄存器中,第四个周期为读取地址为0x100中的内容,即厂商ID(0x1C)。读取设备ID的过程的前三个周期与读取厂商ID相同,第四个周期是读取地址为0x01中的内容,即设备ID(0x2249)。下面的函数为读取芯片ID: U32 get_en29lv160ab_id(void){       U32 temp=0;       CMD_ADDR0 = 0xaa;       CMD_ADDR1 = 0x55;       CMD_ADDR0 = 0x90;         temp = (*(volatile unsigned short *)(flash_base+ (0x100<<1)))<<16;       temp |= *(volatile unsigned short *)(flash_base + (1<<1));              return temp;} 下面的程序实现了对一块区域进行擦除,写入,并读出的操作,判断写入的数据是否与读出的数据相同: ……   ……U16 buffer[1024];char cmd;……   …… void test_en29lv160ab(void){       U32 temp;       U8 sta;       int i;              for(i=0;i<1024;i++)       buffer[i]=2*i+1;                  //读IDtemp = get_en29lv160ab_id();       while(!(rUTRSTAT0 & 0x2)) ;       rUTXH0=(U8)((temp&0xff000000)>>24);       while(!(rUTRSTAT0 & 0x2)) ;       rUTXH0=(U8)((temp&0x00ff0000)>>16);       while(!(rUTRSTAT0 & 0x2)) ;       rUTXH0=(U8)((temp&0x0000ff00)>>8);       while(!(rUTRSTAT0 & 0x2)) ;       rUTXH0=(U8)((temp&0x000000ff));   reset_en29lv160ab();            //这里一定要复位     delay(100);            //擦除块33       sta=en29lv160ab_sector_erase(0xf0000);if(sta == 0)       {              while(!(rUTRSTAT0 & 0x2)) ;              rUTXH0=0xaf;             //擦除出错       }       else       {              for(i=0;i<1024;i++)              {                     sta = en29lv160ab_program(0xf0000+(i<<1),buffer[i]);            //写                     if(sta == 0)           //写出错                     {                            while(!(rUTRSTAT0 & 0x2));                            rUTXH0=0xbf;                                  break;                     }                     delay(200);              }                            if(sta == 1)              {                     for(i=0;i<1024;i++)                     {                            if(read_en29lv160ab(0xf0000+(i<<1))!=buffer[i])            //读出错                            {                                   while(!(rUTRSTAT0 & 0x2)) ;                                   rUTXH0=0xcf;                                    sta = 3;                                   break;                            }                     }                     if(sta !=3)             //全部操作都正确                     {                            while(!(rUTRSTAT0 & 0x2)) ;                            rUTXH0=0x66;                           }              }       }       while(!(rUTRSTAT0 & 0x2)) ;       rUTXH0=0x88;                    //结束} //简单测试CFIvoid test_en29lv160ab_CFI(void){       U16 temp;              *((volatile U16 *)(0x55<<1+flash_base))=0x98;               //CFI命令       temp = (*(volatile unsigned short *)(flash_base+ (0x10<<1)));       //while(!(rUTRSTAT0 & 0x2))      ;       //rUTXH0=(U8)((temp&0xff00)>>8);       while(!(rUTRSTAT0 & 0x2)) ;       rUTXH0=(U8)(temp&0x00ff);              temp = (*(volatile unsigned short *)(flash_base+ (0x11<<1)));       //while(!(rUTRSTAT0 & 0x2))      ;       //rUTXH0=(U8)((temp&0xff00)>>8);       while(!(rUTRSTAT0 & 0x2)) ;       rUTXH0=(U8)(temp&0x00ff);              temp = (*(volatile unsigned short *)(flash_base+ (0x12<<1)));       //while(!(rUTRSTAT0 & 0x2))      ;       //rUTXH0=(U8)((temp&0xff00)>>8);       while(!(rUTRSTAT0 & 0x2)) ;       rUTXH0=(U8)(temp&0x00ff);              temp = (*(volatile unsigned short *)(flash_base+ (0x13<<1)));       //while(!(rUTRSTAT0 & 0x2))      ;       //rUTXH0=(U8)((temp&0xff00)>>8);       while(!(rUTRSTAT0 & 0x2)) ;       rUTXH0=(U8)(temp&0x00ff);              temp = (*(volatile unsigned short *)(flash_base+ (0x14<<1)));       //while(!(rUTRSTAT0 & 0x2))      ;       //rUTXH0=(U8)((temp&0xff00)>>8);       while(!(rUTRSTAT0 & 0x2)) ;       rUTXH0=(U8)(temp&0x00ff);              temp = (*(volatile unsigned short *)(flash_base+ (0x15<<1)));       //while(!(rUTRSTAT0 & 0x2))      ;       //rUTXH0=(U8)((temp&0xff00)>>8);       while(!(rUTRSTAT0 & 0x2)) ;       rUTXH0=(U8)(temp&0x00ff);              temp = (*(volatile unsigned short *)(flash_base+ (0x16<<1)));       //while(!(rUTRSTAT0 & 0x2))      ;       //rUTXH0=(U8)((temp&0xff00)>>8);       while(!(rUTRSTAT0 & 0x2)) ;       rUTXH0=(U8)(temp&0x00ff);              temp = (*(volatile unsigned short *)(flash_base+ (0x17<<1)));       //while(!(rUTRSTAT0 & 0x2))      ;       //rUTXH0=(U8)((temp&0xff00)>>8);       while(!(rUTRSTAT0 & 0x2)) ;       rUTXH0=(U8)(temp&0x00ff);              temp = (*(volatile unsigned short *)(flash_base+ (0x18<<1)));       //while(!(rUTRSTAT0 & 0x2))      ;       //rUTXH0=(U8)((temp&0xff00)>>8);       while(!(rUTRSTAT0 & 0x2)) ;       rUTXH0=(U8)(temp&0x00ff);              temp = (*(volatile unsigned short *)(flash_base+ (0x19<<1)));       //while(!(rUTRSTAT0 & 0x2))      ;       //rUTXH0=(U8)((temp&0xff00)>>8);       while(!(rUTRSTAT0 & 0x2)) ;       rUTXH0=(U8)(temp&0x00ff);              temp = (*(volatile unsigned short *)(flash_base+ (0x1a<<1)));       //while(!(rUTRSTAT0 & 0x2))      ;       //rUTXH0=(U8)((temp&0xff00)>>8);       while(!(rUTRSTAT0 & 0x2)) ;       rUTXH0=(U8)(temp&0x00ff);} void __irq uartISR(void){       char ch;       rSUBSRCPND |= 0x1;       rSRCPND |= 0x1<<28;       rINTPND |= 0x1<<28;       ch=rURXH0;              switch(ch)       {              case 0x11:                     //get ID                     cmd = 1;                     break;              case 0x66:                    //test CFI                     cmd = 6;                     break;              case 0x77:                    //test norflash                     cmd = 7;                     break;       }       while(!(rUTRSTAT0 & 0x2)) ;       rUTXH0=ch;} void Main(void){       U32 temp;       int i; //uart0 port       rGPHCON = 0x00faaa;rGPHUP  = 0x7ff; //init uart0rULCON0 = 0x3;       rUCON0 = 0x5;rUFCON0 = 0;       rUMCON0 = 0;rUBRDIV0 = 26;       rSRCPND = (0x1<<19)|(0x1<<28);       rSUBSRCPND = 0x1;rINTPND = (0x1<<19)|(0x1<<28);       rINTSUBMSK = ~(0x1);       rINTMSK = ~((0x1<<19)|(0x1<<28));       pISR_UART0 = (U32)uartISR;           cmd = 0;       while(1)       {               switch(cmd)              {                     case 1:                   //读ID                            cmd = 0;                            temp = get_en29lv160ab_id();                            while(!(rUTRSTAT0 & 0x2)) ;                            rUTXH0=(U8)((temp&0xff000000)>>24);                            while(!(rUTRSTAT0 & 0x2)) ;                            rUTXH0=(U8)((temp&0x00ff0000)>>16);                            while(!(rUTRSTAT0 & 0x2)) ;                            rUTXH0=(U8)((temp&0x0000ff00)>>8);                            while(!(rUTRSTAT0 & 0x2)) ;                            rUTXH0=(U8)((temp&0x000000ff));                            reset_en29lv160ab();                            break;                      case 0x7:                                           cmd = 0;                            test_en29lv160ab();                            break;                                                 case 0x6:                            cmd = 0;                            test_en29lv160ab_CFI();                            reset_en29lv160ab();                            break;              }}}