Welcome 微信登录

首页 / 操作系统 / Linux / s3c2440的网卡接口扩展

网络对于嵌入式系统来说必不可少。可是s3c2440没有集成以太网接口,所以要想使s3c2440具备以太网的功能,就必须扩展网卡接口。在这里,我们外接DM9000,使其可以与以太网相连接。        DM9000可以直接与ISA总线相连,也可以与大多数CPU相连。在这里,我们当然是要让DM9000与s3c2440相连接了。DM9000对外来说只有两个端口——地址口和数据口,地址口用于输入内部寄存器的地址,而数据口则完成对某一寄存器的读写。DM9000的CMD引脚用来区分这两个端口,当CMD引脚为0时,DM9000的数据线上传输的是寄存器地址,当CMD引脚为1时,传输的是读写数据。我们把DM9000的A8和A9接为高电平,把A4~A7接为低电平,并且把DM9000的AEN接到s3c2440的nGCS4引脚上,则DM9000的端口基址为0x20000300,如果再把DM9000的CMD引脚接到s3c2440的ADDR2引脚上,则我们就可以定义DM9000的这两个端口地址,它们分别为: #define DM_ADDR_PORT          (*((volatile unsigned short *) 0x20000300))        //地址口#define DM_DATA_PORT           (*((volatile unsigned short *) 0x20000304))        //数据口 如果要写入DM9000中的某个寄存器,则先把该寄存器的地址赋予DM_ADDR_PORT,然后再把要写入的数据赋予DM_DATA_PORT即可。读取DM9000中的某个寄存器也类似。下面的函数的作用分别是DM9000的读、写寄存器操作: //写DM9000寄存器void __inline dm_reg_write(unsigned char reg, unsigned char data){DM_ADDR_PORT = reg;            //将寄存器地址写到地址端口DM_DATA_PORT = data;            //将数据写到数据端口} //读DM9000寄存器unsigned char __inline dm_reg_read(unsigned char reg){DM_ADDR_PORT = reg;            return DM_DATA_PORT;             //将数据从数据端口读出}              完成了对DM9000寄存器的读写函数的编写,下面我们就可以初始化DM9000,它的过程就是适当配置DM9000寄存器的过程。DM9000的内部寄存器在这里就不做介绍,而且DM9000的应用数据手册也有如何初始化DM9000的步骤,我们这里只给出具体的程序: void dm_init(void){       dm_reg_write(DM9000_NCR,1);         //软件复位DM9000       delay(30);              //延时至少20μs       dm_reg_write(DM9000_NCR,0);         //清除复位位        dm_reg_write(DM9000_NCR,1);         //为了确保复位正确,再次复位       delay(30);       dm_reg_write(DM9000_NCR,0);              dm_reg_write(DM9000_GPCR,1);       //设置GPIO0为输出       dm_reg_write(DM9000_GPR,0);         //激活内部PHY              dm_reg_write(DM9000_NSR,0x2c);           //清TX状态       dm_reg_write(DM9000_ISR,0xf);                     //清中断状态              dm_reg_write(DM9000_RCR,0x39);           //设置RX控制       dm_reg_write(DM9000_TCR,0);                //设置TX控制       dm_reg_write(DM9000_BPTR,0x3f);          dm_reg_write(DM9000_FCTR,0x3a);       dm_reg_write(DM9000_FCR,0xff);dm_reg_write(DM9000_SMCR,0x00);           dm_reg_write(DM9000_PAR1,0x00);         //设置MAC地址:00-01-02-03-04-05       dm_reg_write(DM9000_PAR2,0x01);                dm_reg_write(DM9000_PAR3,0x02);dm_reg_write(DM9000_PAR4,0x03);       dm_reg_write(DM9000_PAR5,0x04);dm_reg_write(DM9000_PAR6,0x05);           dm_reg_write(DM9000_NSR,0x2c);           //再次清TX状态       dm_reg_write(DM9000_ISR,0xf);                     //再次清中断状态        dm_reg_write(DM9000_IMR,0x81);           //打开接受数据中断}        DM9000内部有0x3FF大小的SRAM用于接受和发送数据缓存。在发送或接收数据包之前,数据是暂存在这个SRAM中的。当需要连续发送或接收数据时,我们需要分别把DM9000寄存器MWCMD或MRCMD赋予数据端口,这样就指定了SRAM中的某个地址,并且在传输完一个数据后,指针会指向SRAM中的下一个地址,从而完成了连续访问数据的目的。但当我们在发送或接受一个数据后,指向SRAM的数据指针不需要变化时,则要把MWCMDX或MRCMDX赋予数据端口。下面的程序为DM9000发送数据的函数,它的两个输入参数分别为要发送数据数组首地址和数据数组长度。在这里我们已经知道数据的宽为16位,它是由DM9000的硬件引脚设置实现的。 void dm_tran_packet(unsigned char *datas, int length){       int i;              dm_reg_write(DM9000_IMR, 0x80);          //在发送数据过程中禁止网卡中断        dm_reg_write(DM9000_TXPLH, (length>>8) & 0x0ff);           //设置发送数据长度dm_reg_write(DM9000_TXPLL, length & 0x0ff);           DM_ADDR_PORT = DM9000_MWCMD;                 //发送数据缓存赋予数据端口              //发送数据       for(i=0;i<length;i+=2)       {              delay(50);              DM_DATA_PORT = datas[i]|(datas[i+1]<<8);            //8位数据转换为16位数据输出       }            dm_reg_write(DM9000_TCR, 0x01);          //把数据发送到以太网上 while((dm_reg_read(DM9000_NSR) & 0x0c) == 0)       ;                           //等待数据发送完成       delay(50); dm_reg_write(DM9000_NSR, 0x2c);          //清除TX状态dm_reg_write(DM9000_IMR, 0x81);          //打开DM9000接收数据中断}